
Summary of the DH IO Modules Review

Marc Paterno

November 2, 2001

Abstract

This is a brief summary of the agreements reached during the
review of the DH IO modules, from meetings on 17 and 19 Septem-
ber, 2001. Included in the appendix are comments on the a subset
of the classes in the DHMods package.

1 Introduction

This review was held to help resolve some technical issues regarding
the design of the framework modules which use the Data Handling
system to perform event-related input and output. The participants
in the review were: Rob Kennedy, Fedor Ratnikov, Pasha Murat, Rob
Harris, Liz Sexton-Kennedy, and myself. In the interest of brevity, I will
not try to summarize the positions of all the interested parties before
the review meetings. I summarize here only the agreements reached
during the meetings, and add a few comments of my own concerning
how some of the unresolved issues may be resolved.

I was also asked to perform a brief code review of a subset of the
classes in the DHMods package. My comments can be found in the ap-
pendix. These comments are my opinions only, and do not (necessarily)
reflect the opinions of the rest of the review group.

2 Meeting Summary

The main issue to be resolved revolved around the choice of which
software package (DHMods, Edm, or Framework) should be responsible
for various functionalities. Fedor provided a list of functionalities, and
after some discussion we agreed on the following package assignments.
In several cases, the required functionality needs to be coordinated
between different packages; these cases are noted, and the responsible
parties are listed.

1. Selection of data by any combination of dataset or fileset or file
names. This is a DHMods responsibility.

1



2. “Include” and “exclude” support for datasets, filesets, and files.
This is a DHMods responsibility.

3. Placement of restrictions on run numbers and runsection num-
bers upon input. This is a DHMods responsibility.

4. Provision of access to data residing in the DH system and to local
“private” files. This is a DHMods responsibility. At the appropriate
time, it may be possible to make the FileInputModule obsolete, in
order to reduce the maintenance burden associated with the IO
modules. This will be sensible to consider after the unification of
CDFRootFileStream and SeqRootDiskFile classes.

5. Communication with the Data File Catalog to obtain a full list of
requested data. This is a DHMods responsibility.

6. Communication with the Disk Inventory Manager to deliver re-
quested data in the most effective order. This is a DHMods re-
sponsibility.

7. Processing of events in the “natural” order, and building a catalog
of events in the file. This is an Edm responsibility.

8. Navigation within a single file; skipping events both forwards and
backwards, direct access by run and event number, inserting Be-
gin of Run records as necessary. This is an Edm responsibility.

9. Reading and writing events using ROOT buffers, without expand-
ing objects. This is an Edm responsibility.

10. Filtering of input events, by run number and event number. This
is a Framework responsibility.

11. Specification of output by file name or dataset name. This is a
DHMods responsibility.

12. Assignment of data file names according to the CDF convention.
This is a DHMods responsibility.

13. Collection of statistics (number of bytes written, etc.) for the out-
put file. This is an Edm responsibility.

14. Collection of output files in a given directory. This responsibility
needs to be clarified; the proper assignment was not clear. One
suggestion is that the collection of output files in a given directory
should be managed by DHMods, which perhaps directs the actions
of Edm classes to perform the specific tasks.

15. Entering of FILE record into the Data File Catalog. This is a
DHMods responsibility.

2



16. Splitting of output data into files of a given size. This is an Edm
responsibility, but the Edm is not the correct place for the infor-
mation defining CDF policies to reside. The Edm needs to be given
the correct information to control this functionality. The details
need to be agreed upon by Rob and Fedor.

17. Keeping runsections contiguous in a file. This is an Edm respon-
sibility, but needs information from higher-level packages to do
the necessary work. The details need to be agreed upon by Rob
and Fedor.

18. Intermediate saving of file status, to minimize reprocessing in case
of the crashing of a job. This is an Edm responsibility.

19. Creation of new ERS (empty runsection) when an EmtpyRunsec-
tion condition is detected. The ERS itself belongs to the Edm, but
the triggering of its creation is a DHMods responsibility, since it
has the DFC access required for this function.

20. Creation of multiple data branches, synchronized with the pri-
mary data branch. This is an Edm responsibility.

21. Keeping the Data File Catalog consistent in case of job crashes.
This is a DHMods responsibility. In order to obtain full automa-
tion, some of the required functionality may require additions to
Framework. Fedor and Liz should agree upon the details.

An important general rule that guided these decisions is that han-
dling of files is the responsibility of DHMods, but the contents of those
files is the responsibility of the Edm.

It was agreed that responsibilities in the list above which properly
belong to the Edm will be integrated into the Edm, and that the DHMods
classes which contain this functionality will become obsolete once the
Edm implementations are ready. The detailed coordination of the move
is left to Rob and Fedor.

A Some Comments on Classes in DHMods

I was asked to perform a brief code review for the classes in DHMods.
This was limited to only those classes which will not become obsolete
due to the realignment of responsibilities. I have concentrated on is-
sues of maintainability, and thus on behavior that may be surprising
to users or future maintainers of these classes.

I have significant reservations about this package. I find problems
in both high-level design and low-level details. For example, in the area
of high-level design, the classes DHInputModule and DHOutputModule

3



both significantly violate the idea of a modular framework; they com-
municate directly with each other, which to a large extent prevents their
interchangeable use with other input and output modules. This flaw is
probably the single most significant in the design; it must be changed.
If the solution requires addition to the framework, that development
must be coordinated with the framework, and not implemented in the
DHMods package.

A recurring design defect is the introduction of needless inheritance
hierarchies. An inheritance hierarchy is a needless complication when
it contains only one derived class, and when there is no clear need for a
second derived class. In this situation, the extra complexity is a detri-
ment to maintainability, and is sometimes a detriment to efficiency. It
also makes testing more complex, since the general interface should be
tested separately from the single implementation.

As an example of problems in the low-level implementation details,
I have inspected the class DHInputModule in a fair level of detail, and
in the section below present many comments on it.

For want of time, I have treated the other classes in much less detail.
The comments I make on the design and implementation of DHInput-
Module are in many cases apply to these other classes.

Finally, there is insufficient documentation of most classes in the
code. The CDF coding guidelines sensibly require a short description
of the purpose of each class in the header which declares the class.
The common lack of such descriptions made the review of this pack-
age significantly more time-consuming than it would otherwise have
been. This will also be a sever detriment to the maintainability of this
package.

A.1 DHInputModule

DHInputModule.hh The function

virtual std::string DHInputModule::description() const;

is a dangerous override to the base class function

char* APPExecutable::description() const;

This function has several problems. Note that the function in DH-
InputModule has the same name and argument types, so it is an over-
ride, not an overload. The base class function is not virtual, so poly-
morphic behavior will not occur when the function is invoked on a base
class pointer. When the function is invoked on an object which has a
static type of DHInputModule, polymorphic behavior will occur. The re-
turn type of the derived class’s function is also different from that of

4



the base class’s function, and the types are not implicitly convertible,
nor are they related by derivation. These are all dangerous features.
The function in DHInputModule should be removed.1

The function

virtual inline std::string eventBranchName ()
{ return "Sequential"; }

has several problems.
First, since the function is implicitly inlined (it appears in the body

of the class declaration), the keyword inline is not needed. Second, it is
only under exceptional circumstances that a compiler is able to inline
a call to a function that has been declared virtual. The usual result is
to not inline the function call, but to still suffer some code bloat for the
function which will appear in every compilation unit that includes the
header in which the function is declared. Generally, a function should
not be declared both virtual and inline.

In this case, it seems that polymorphic use of eventBranchName is
unlikely; if this is correct, then the function should not be declared
virtual. If in fact polymorphic use of this function is likely, then the
function should not be inlined, and should be implemented in the the
source (not header) file for this class.

Functions that do not modify the object on which they are invoked,
and which do not return pointers or references to members through
which the object may be modified, should be declared const. For exam-
ple, the function

const AbsEvent* getConstRecord ();

does not modify the state of the DHInputModule, nor does it provide
non-const access to internal data; it should be declared const.

Because of the resolution of responsibilities described in §2, the fol-
lowing functions should probably be removed:

virtual bool jumpToEvent (int fRun, int fEvent);
virtual bool jump (int fNRecords);
virtual const EventInfoBase* nextRecord ();

It is possible that the same resolution of responsibilities makes some
of the data members of DHInputModule superfluous; for example, the
need for TBuffer* mCompactBuffer seems to have been removed. All
the data members should be reconsidered.

1It would also be best to modify the function in APPExecutable to return a pointer to
const, or, if the resulting changes in client code are not too great, a std::string or const
reference to a std::string.

5



DHInputModule.cc The use of the non-standard long long (which is
used through the typedef int8) would be better replaced with a class
with the appropriate interface. This would avoid code such as:

int8 runSection (unsigned long fRun,
unsigned short fSection) {

int8 result = fRun & 0xffffff;
result = (result << 16) | (fSection & 0xffff);
return result;

}

This is, strictly speaking, not a DHInputModule issue; int8 would be
better implemented as a class in the same file that now contains the
typedef. This class should provide an interface that makes the explicit
bit-twiddling in this function unnecessary.

The handling of the data members mRootFileStream and theFile
(inherited from the base class APPReaderInputModule) is extremely con-
fusing and dangerous. From the base class we inherit a pointer to an
AbstractFile; the pointed-to object is owned by the APPReaderInput-
Module, and is deleted in the destructor. Setting this pointer to be the
address of another data member of DHInputModule will result in double
destruction of the pointed-to object, with undefined (and probably dis-
astrous) behavior. This is currently avoided by having the base class’s
data member set to zero during destruction, but this is not good life-
time management practice, and seems very likely to lead to some future
bugs (if, for example, the base class is modified).

If the requirement is to have access to the interface of the CDFRoot-
FileStream class, and to avoid typing dynamic cast in many functions,
then a private member function that wraps the dynamic cast might
be appropriate. It is my understanding that the CDFRootFileStream
class will be replaced with a newer class from the EDM; at the soonest
possible time this should be done.

As a minor point for efficiency and safety, it would be better for
the many data members of DHInputModule to be set in the colon-
initialization list for the class, rather than having them re-assigned
in the body of the constructor.

The destructor of DHInputModule is also much more complicated
than necessary, which makes it harder to maintain. Since it is safe to
delete a null pointer, there is no need to test the pointer before calling
delete on it. And since the object containing the pointer is about to
disappear, there is no need to zero the pointer after deletion.

Thus the repeating blocks similar to:

if (_mCompactBuffer) {
delete _mCompactBuffer;
_mCompactBuffer = 0;

6



}

can be replaced by the single line

delete _mCompactBuffer;

This complication is repeated in other classes in DHMods; is should
be removed wherever it is found.

Much of the work done in beginJob is likely to be changed when the
management of files and buffers is given over to the appropriate EDM
classes. My main concern with this function is the calling of the base
class function beginJob . It seems likely that the base class functions
were written to override, rather than to cascade. If derived classes
really need to use the functionality in the base class, and to add a
bit of their own, then I would recommend use of the Template Method
pattern2. The same pattern may also be appropriate for endJob and
abortJob .

Also in abortJob , writing to std::cout and std::cerr should be
replaced by use of the ErrorLogger. This is repeated in many functions;
the module should be searched for all such instances (except where
the output is to std::cout for menus, or other interactive use where
output to the terminal is really wanted).

The function openNextFile is very difficult to follow, and could use
refactoring for the sake of maintainability. For example, I believe that
if the test

AbsInterp::theInterpreter()->
fileOperation(_theFilename.c_str(),"exists" ))

fails, openNextFile will return AppResult::EOFR , indicating a normal
end-of-file has been reached. It seems likely that this is not correct be-
havior, but the structure of the code is such that it is not immediately
clear that this is the result. It also seems that there should be some
more sensible way to test for the existence of a file than invoking an in-
terpreter with the appropriate “magic strings”, but this may be outside
the control of DHMods.

The function nextEvent is still more complex than openNextFile ;
it extends for about 160 lines, as a series of nested if tests. It is in
clear need of refactoring into manageable pieces. A block of code this
long and complex is almost certainly too complicated to test.

It seems very odd that DHInputModule would need a function like
getOutputModule , getDHOutputModule , or sendEmptyRunSections-
ToOutput , or any of the several other output functions . The job of DH-
InputModule is to perform input – why is it writing to the output? Un-
less my understanding of this basic feature is incorrect, it may be that

2Template Method is defined in Gamma et al., Design Patterns.

7



a more general design review is needed here. Perhaps DHInputModule
needs a way to signal to an output module that action is needed?

The function createContentCatalog writes to std::cout on every
call. This should at least be turned into writing to the error log with
“informational” status, and probably be removed. A properly function-
ing program needed tell the user every time an action is completed
successfully.

A.2 DHOutputModule

The header for the class DHOutputModule forward-declares the class
DHInputModule, and the source file for DHOutputModule includes the
header for DHInputModule, but this physical coupling seems to be un-
necessary; DHOutputModule never uses DHInputModule. It may suffice
to remove the forward-reference and inclusion of the header, to destroy
the unwanted coupling.

DHOutputModule is considerably simpler than DHInputModule, and
has fewer implementation problems. The greatest ones are similar to
some of those in DHInputModule: poor error handling (e.g. printing
to std::cerr rather than using the error logger facility, and return-
ing AppResult::OK even after failures), and poor use of inheritance,
resulting in the use of many dynamic casts in the code.

A.3 DHOutputStream

Class DHOutputStream is another complex class. It contains approx-
imately 30 member data, most of which are of built-in types; this is
generally a sign that some significant abstractions have been missed –
and thus the design is more difficult to understand, and thus maintain,
than it needs to be. In the header, these data members are grouped into
what appears to be logical categories. It may be that refactoring the de-
sign to replace these groups with classes (with relevant member func-
tions!) would simplify this class considerably. For example, the lengthy
initialization list in the constructor of DHOutputStream contains many
“magic numbers”; these would be much more easily understandable in
the context of a smaller group of cohesive classes, each of which has
its own sensible default initializer.

As a second example, in the DHOutputStream::open function, we
find a complex test which would greatly benefit from the refactoring
suggested above. This single test directly involves several policies (file
sizes, disk space reservation, detailed pathname manipulation); it is
thus fragile, needed change (or at least investigation) when any of these
policies change. A suitable refactoring would put each of these behav-
iors into its own class, which would then be the single point of support
for modification of those policies.

8



Finally, DHOutputStream contains a nested class, EmptySections,
which is clearly and Edm concept; EmptySections should be removed
to Edm, or if there is already an equivalent concept there, that class
should be used.

A.4 EventInfoBase and EventInfoEntry

The reason for the existence of the class EventInfoBase (in the data
handling package) is unclear; it seems that this class contains EDM
information, and should be a part of the Edm package; if a suitable
replacement for it in Edm already exists, it should be removed and the
Edm class used in its place.

If these two classes are to be moved to the package Edm, a few mod-
ifications are in order. EventInfoBase is used as a base class, but is
unsuitably designed. It contains no virtual functions, which is a clear
sign that inheritance from it is probably misplaced. The destructor for
EventInfoBase is not virtual, and thus polymorphic use of this class
will likely lead to memory corruption or leaks, if not now, in the future.
Finally, I could find only one class that inherits from EventInfoBase,
EventInfoEntry. This seems to be a needless complication. If only one
derived class is to exist, the complexity of an inheritance hierarchy
should be reconsidered; this would remove the problems with the in-
appropriateness of EventInfoBase as a base class.

The implementation of EventInfoBase is full of switch statements,
based upon the “record type” of the object. In contrast with the need-
less inheritance introduced with EventInfoBase, it seems that this was
a place where needed inheritance was omitted. The record within the
EventInfoBase object would sensibly be replaced by a pointer to a base
class, which would be filled in with an instance of one of the subclasses.

The function printRecordType does not do what the name implies;
it prints nothing, but instead returns a C-style string. Misleading func-
tion names like this makes reading, and thus maintaining, the code
more difficult. The function name should be changed to reflect its
behavior. Additionally, returning a bare pointer (to a null-terminated
byte array) imposes a burden on the user, who needs to understand
the semantics of the returned pointer. Does it confer ownership of the
pointed-to memory, or does it not? It would be simpler to return an in-
stance of the class std::string. If efficiency is a concern, then the func-
tion should contain one (or more) function-level static strings (so that
they are constructed only once), and the return type can be changed to
be a const reference to the contained string.

Also in this class, operator< is rather complicated; in this function,
we have not only switch statements, but nested switch statements.
Such a function is extraordinarily difficult to understand, and thus
very difficult to get right. Furthermore, it is extraordinarily difficult to

9



test.
This operator takes on unusual importance for this class because

EventInfoEntry (the sole derived class) is used in a set in another class.
It is far from clear whether this function induces a strict weak ordering;
if it does not, then the set into which the EventInfoEntry instances are
inserted will misbehave in a manner that will be difficult to identify and
diagnose. Furthermore, the fact that this operator is called frequently
(by the set) makes the inefficiency of the several function calls involved
in evaluating the operator especially painful.

A.5 FileContentCatalog

The FileContentCatalog.hh presents several classes: EventInfoEntry,
LastEntry, and FileContentCatalog. EventInfoEntry is described in the
section above.

FileContentCatalog contains a set of EventInfoEntry objects, as well
as a pointer to a nested class, LastEntry. LastEntry contains a pointer
to a set of EventInfoEntry objects, as well as an iterator into a set of
EventInfoEntry objects. This is an extremely difficult relationship to
understand, and is thus a drawback to maintainability. In short time I
was able to study this class, I could not clearly discern the purpose for
this intertwining of classes. Both are in need of adequate documenta-
tion; with such, it may be easier to determine how to simplify this part
of the design.

FileContentCatalog seems to function as a collection of “Event” and
“BOR” objects. It has several members which perform the function of
returning pointers to these objects. Again, the organization is difficult
to follow, but it seems again to be inefficient. Returning either and
“Event” or a “BOR” requires construction of a temporary EventInfoBase
object, and a complicated search which includes searching through
a the set of EventInfoEntry objects to find one that matches the just-
constructed temporary. Again the complexity of the code will make
testing and maintenance difficult, and again this is exacerbated by the
lack of documentation.

As an example of what this complexity leads to, both the member
functions getEvent and getBOR are very inefficient. Each begins with
making a temporary EventInfoBase object, which is then passed to a
function (getEntry ), where it is used to create a temporary EventInfo-
Entry object, which is then used in a somewhat complicated nest of
tests. Refactoring of the design is needed again here.

A.6 Testing

One of the important features required of DHMods, stressed by Fedor in
the review meetings (see § 2, item 21), is the robustness of the modules.

10



Specifically, it is important that the crash/recovery code is thoroughly
tested. I was not able to find the test code that demonstrates that this
testing has been done. If the tests exist elsewhere, I believe they should
be moved into the DHMods package. If they do not exist, they must be
written.

Because of the complexity of the design, and the need for refactor-
ization, it may not be possible to implement such tests immediately. I
would urge that writing the tests be a part of the redesign process.

Another functionality noted as important is the “include” and “ex-
clude” support (see § 2, item 2). I was not able to find tests in place
that assure these rules (which are rather complicated) are behaving as
expected. If the tests exist elsewhere, they should be moved into the
DHMods package. If they do not exist, they must be written.

11


	Introduction
	Meeting Summary
	Some Comments on Classes in DHMods 
	DHInputModule
	DHOutputModule
	DHOutputStream
	EventInfoBase and EventInfoEntry
	FileContentCatalog
	RunSection
	Testing


